If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+9n-552=0
a = 1; b = 9; c = -552;
Δ = b2-4ac
Δ = 92-4·1·(-552)
Δ = 2289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{2289}}{2*1}=\frac{-9-\sqrt{2289}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{2289}}{2*1}=\frac{-9+\sqrt{2289}}{2} $
| 2x/11=31 | | 4=8-7d | | 40=84-7d | | 13+5=8x-15 | | 41=6-7w | | 2y2-3y-5=0 | | 2n^2-20n-30=12 | | 11x3x=(33x2)+(2x3x)+(2x11x) | | 49v=828 | | x+.6=4 | | .5x+9=-4 | | Y-12x=19 | | 2x+3×=60 | | x+7√x+10=0 | | 9x^4+-3x^3+-32x^2+-4x+16=0 | | 2n-1/2n=63 | | 7x+18+9x=5 | | (13x+45)=(12x-40) | | -15^2+28x-5=0 | | 8(-1+2v)-3=5-3(-v+1) | | -6(k+2)-8k=4(-6k-3) | | 16w^2-20w-6=0 | | 22.25+.05x=15.95+.12x | | 267+.05x=191.4+.12x | | 267+.05x=191.4+.12 | | -4(r-3)=-(r+6) | | -(1-8x)=-(1+2x) | | -4a-4(a-8)=9-8a | | 4(3x-2)=10(x) | | 20-5x=40-13x | | 2(-1-7x)=x-5(7+3x) | | 25-1/4q=5+2q |